
A MetaModel for Quality Software Based on the
MDA Approach

Youness BOUKOUCHI1, Adil KHAMAL2, Abdalaziz MARZAK3, Hicham MOUTACHAOUIK4

123 Ben M‘Sik Faculty of science, University Hassan II, PB 7955 Casablanca, Morocco
4National School of Arts and Trades, PB 7955, University Hassan II, Casablanca, Morocco

Abstract—Today, technology and IT platforms are in
continuous exponential growth, however, this growth has
created several problems related to portability, reusability,
interoperability but most important of all is the fact that it is
related to the software quality. From these facts, the OMG
proposed the Model Driven Architecture (MDA), which is
based on the models as independent primary objects of any
platform, and which are transformed thereafter into other
objects specific to each platform (code, dB count,
XMLFile,…). Therefore, to assess and ensure the quality of
software, stakeholders (designer, developers, users , ...) in
this domain, need a quality model , the most difficult thing to
do is to choose it from a diversity of models taking into
account the rarity of the meta-models. Based on the MDA
approach, this article will introduce a software quality and
quality models, a comparison of model structures and finally,
the proposal of our meta-model of software quality.
Keywords: MDA, Model Quality, Metamodel, Metrics,
Software Quality.

1. INTRODUCTION

Today, technology and IT platforms are in continuous
exponential growth , however, this growth has created
several problems related to portability, reusability,
interoperability but most important of all is the fact that it is
related to the software quality. The models of quality
suggested are general in the description of software quality
in particular when we want to technically define and
describe the metrics.

So the American association Object Management
Group (OMG) whose objective is to standardize and
promote the model object in all its forms, proposed the
Model Driven Architecture (MDA), which is based on the
models as independent primary objects of any platform
which are transformed thereafter into other objects specific
to each platform (code, dB count, XMLFile,…).

Therefore, to assess and ensure the quality of software,
stakeholders (designer, developers, users, ...) in this
domain, need a quality model , the most difficult thing to
do is to choose it from a diversity of models taking into
account the rarity of the meta-models. Based on the MDA
approach, this article will introduce the software quality
and quality models, a comparison of model structures, and
finally the proposal of our meta-model of software quality.

This paper is organized as follows: section 2 presents
the concepts of MDA and software quality, Section 3
presents a comparison of the structures of software quality
models, Section 4 presents our meta-model quality, section
5 presents conclusions and describes future work.

2. SOFTWARE QUALITY AND MODELS
1. Software Quality

Software quality is the most important element in the
development of software, because the quality could reduce
the cost of maintenance, software testing, etc... Quality has
very different meanings for customers, users, managers,
developers, testers, etc… Many institutes and organizations
have their own definitions of software quality and also
quality models. Below some definition of software quality
[2]:

• ISO 9126 : Is a set of attributes of a software
product which describes and evaluates the quality.

• ANSI : Quality is the totality of features and
characteristics of a product or service that relies on
its ability to meet the specific needs.

• IEEE (IEEEStd 729-1983) : The totality of
features and characteristics of a software product
that influence on its ability to meet specific needs.

In the most general sense, software quality can be
defined as: An effective process for software development,
applied in a manner that creates a useful product and
delivers measurable value for those who produce it and
those who use it.

2. Models And Metamodels

The model-driven architecture (MDA) [14] is an
approach to software development which emphasizes the
use of models in the specification, development, analysis,
verification and management systems. MDA places models
at the center of software engineering process, it is a form of
generative engineering, in which all or a part of software is
generated from models (Figure 1).

Each model usually responds to a problem,
independently from the rest of the technical issues involved
in building the system. A model is written in the language
of their meta-model. A meta-model describes the concepts
of language, the relationship between them, the mapping
rules and transformation of model elements to comply with
the rules of the domain.

As the number of quality models and their importance
grow, the need to measure and evaluate the quality model
by meta-models is becoming increasingly relevant.
However, there is a lack of meta-models repositories that
allow generation of these models. International standards
(in particular ISO and IEEE) have to state to be too general

Youness BOUKOUCHI et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (3) , 2014, 4390-4393

www.ijcsit.com 4390

to treat the specific characteristics of the meta-models
because of their double natures: they are models and at the
same time they are languages of modeling.

Figure 1: Process model development by OMG

3. STRUCTURE OF QUALITY MODELS
1. Quality Models

ISO/IEC 9126-1 defines a quality model as a
"framework which explains the relationship between
different approaches to quality". Quality models
decompose in hierarchical elements. An approach to quality
is to decompose quality in Factors, Sub-factors, and
criteria. Evaluation of a program begins with measuring
each quality criteria with numerical value from metrics.
Then, each quality sub-factors is assessed using their
criteria. Finally, numerical values are assigned to quality
characteristics from their quality sub-factors [2]. Below are
some models and methods of software quality [1]:

a) MCCALL MODEL

McCall model presents eleven criteria grouped into
three visions: operations, revisions and product transitions.
This model is allocated as follows: factors, criteria and
metrics.

b) BOEHM MODEL

Boehm's model is similar to the model of McCall. It
also presents a hierarchical quality model structured around
four levels: high-level characteristics, intermediate-level
characteristics, primitive-level characteristics and metrics.

c) DROMEY MODEL

Dromey model is structured around a process focused
on the relationship between quality attributes and sub-
attributes, and the attempt to connect the properties of
products with attributes. To create this new model, the
main idea was to obtain a large model to satisfy various
systems.

The levels of this model are defined as follows: the
properties of the product, quality attributes, sub-attributes
and metrics.

d) ISO 9126 ET 25000 MODEL

The model ISO9126 and ISO 25000, defines and
describes a series of characteristic qualities of a software
product (internal and external characteristics,
characteristics of use) that can be used to specify the
functional and non-functional requirements of customers
and users.

Each characteristic is decomposed into sub-
characteristics, and for each of them, the standard provides
a set of metrics to put in place to assess the conformity of
the product developed from the requirements contained in
the guidelines.

e) GQM APPROACH

 GQM (Goal, Question, and Metric) [15] is an
approach to software metrics that has been promoted
by Victor BASILI, GQM defines a measurement model on
three levels:

• Conceptual level (goal): A goal is defined for an
object, for a variety of reasons, with respect to various
models of quality, from various points of view and
relative to a particular environment.

• Operational level (question): A set of questions is used
to define models of the object of study and then
focuses on that object to characterize the assessment or
achievement of a specific goal.

• Quantitative level (metric): A set of metrics, based on
the models, is associated with every question in order
to answer it in a measurable way.
f) IEEE 1061-1998 APPROACH

This standard provides a methodology to establish
quality standards implementation and validation process for
measuring product quality. This method applies to all
phases of software for the lifecycle of the software [3].

The software quality metrics framework (Figure 2) is
designed to be flexible. It permits additions, deletions, and
modifications of quality factors, quality sub-factors, and
metrics. Each level may be expanded to several sublevels.
The framework can thus be applied to all systems and can
be adapted as appropriate without changing the basic
concept.

Figure 2 : Software quality metrics framework

Youness BOUKOUCHI et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (3) , 2014, 4390-4393

www.ijcsit.com 4391

TABLE 1: A COMPARISON BETWEEN THE STRUCTURES OF MODEL QUALITY SOFTWARE.

 Mac Call Bohem ISO GQM IEEE 1061 Dromey

Level 1 View View View View View View

Level 2 Factors high-level characteristics Characteristics goals Factor Product properties

Level 3 criteria
Intermediate level
characteristics

Sub-characteristics questions Subfactor Quality attributes

Level 4 - primitive characteristics Quality Attributes - - sub-attributes

Level 5 Metric Metric Metric Metric Metric Metric

2. A Comparison Between The Structure Of Models
Quality

After analyzing the structures of these quality models,
we can compare their structures (Table 1), and draw the
following conclusions:

• All quality models (MacCall, ISO, Bohem), and
approaches of definition of software quality
(IEEE, GQM, Dromy) define their models
according to a specific point of view (user,
developer, designers, etc..).

• All views are decomposed into major quality
characteristics called: Factor, Objectives, etc..

• These major characteristics are decomposed into
sub-characteristics (called criterion or question in
some model). these sub-characteristics may also
contain sub-characteristics called in some models,
attributes, basic or primitive characteristics ;

• And finally in each structure of model, there are
the metrics, they are the basic elements presented
by a quantitative value.

4. A METAMODEL FOR SOFTWARE QUALITY
1. Metamodel Repository

From the comparison above between quality models
(Table.1), we proposed a meta-model repository (Figure 3)
all existing models of quality, it can generate models as
ISO9126, MacCall,... or generate personal models
according to the requirements of the designer (User,
developer, etc.).

This generation based on our meta-model used to
generate a model in the form of a file XML, which can be a
point of communication between all stakeholders in the
quality system, and without problems of technical
specifications of the platforms, XML technology is the
basis for all platforms.

2. Metamodel Structure

This meta-quality model (Figure 3) is divided into
hierarchical elements. It structure quality is divided into
three levels: view, characteristic and metric, whose
characteristics can be divided into several sub-
characteristics and so on.

a) Overview (Point of view): Quality can be
perceived with various points of view, differences

of views are mainly due to the fact that the project
has many stakeholders, each stakeholder perceives
the quality of its manner, what implies a prospect
focused on the specific requirements of
stakeholder towards the system.

b) Characteristic: After the view, we find the
characteristics, (called Factors, Goals, Properties,
etc), these characteristics are broken up into
several under-characteristics until arrived in
granular indecomposable characteristics and
which are directly measurable by metrics.

c) Metric: A metric used to measure and evaluate a
characteristic by values.

Figure 3: Meta-model for software quality

3. Mapping Rules

The mapping of our meta-model is presented in Table
2 which explains the passage of the elements of our meta-
model to other quality models. This mapping shows the
power of our meta-model, respecting the specificity of each
quality model (ISO, MacCall, IEEE, ...) and the possibility
of generating other personal model.

View

+View_Name

characteristic

+Characteristic_Name

Metric

+Metric_Name
+Metric_Value

+Contains

1..*

0..*

0..* 1..*
+subcharacteristic

0..*

0..*

Model

+Model_Name

+Contains

1..*

0..1

Youness BOUKOUCHI et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (3) , 2014, 4390-4393

www.ijcsit.com 4392

TABLE 2: MAPPING RULES OF META-MODEL

Metamodel
Mac
Call

Bohem ISO GQM IEEE 1061 Dromey personel model

View View View View View View View View

ch
ar

ac
te

ri
st

ic
s

characteristics Factors
High

characteristics
Characteristics goals Factors

Product
properties

characteristics

Sub-characteristics criterias
Intermediate

characteristics
Sub-

characteristics
questions Subfactor

Quality
attributes

Sub-characteristics

Sub-
subcharacteristics

-
primitive

characteristics
Quality

Attributes
- -

sub-
attributes

Sub-
subcharacteristics

N sub
subcharacteristics

- - - - - -
N sub-

subcharacteristics

Metric Metric Metric Metric Metric Metric Metric Metric

1. CONCLUSION

The proposed meta-models will help stakeholders
describe the quality of their models as well as instantiate
and communicate them to any platform without taking into
account technical specifications. This work is considered
the first step in the development of metamodel quality
system, we still have to develop the library and syntax of
metric.

REFERENCES

[1] Comparative Study of Software Quality Models, Youness
BOUKOUCHI et al, the International Journal of Computer Science
Issues, April 2013.

[2] A Quality Model for Design Patterns .Khashayar Khosravi and
Yann-Gaael Gueheneuc, Summer 2004

[3] IEEE Std 830-1998 IEEE Recommended Practice for Software
Requirements Specifications

[4] IEEE Std 1061™-1998 (R2009) IEEE Standard for a Software
Quality Metrics Methodology

[5] IEEE Std 982.1™-2005 (Revision of IEEE Std 982.1-1988) IEEE
Standard Dictionary of Measures of the Software Aspects of
Dependability

[6] ISO/IEC TR 9126, Software engineering –Product quality – Part
1,2,3. 2002-03-15.

[7] “Enterprise Information Integration and the OMG’s MDA and
MOF”, Randall M. Hauch, OMG's Third Workshop on UML for
Enterprise Applications: Model Driven Solutions for the Enterprise
October 21-24, 2002

[8] “A Metamodel for Specifying Quality Models in Model-Driven
Engineering”, Parastoo Mohagheghi and VegardDehlen, Engineering
Research Institute, University of Iceland , 2008

[9] Definitions and Approaches to Model Quality in Model-Based
Software Development – A Review of Literature, PARASTOO
MOHAGHEGHI, VEGARD DEHLEN, TOR NEPLE, Engineering Research
Institute, University of Iceland , 2009

[10] 12 Steps to Useful Software Metrics, Linda Westfall,The Westfall
Team, westfall@idt.net

[11] La mesure des modèles par les modèles : une approche generative,
Martin Monperrus, octobre 2008.

[12] Software Engineering Metrics: What Do They Measure and How Do
We Know? Cem Kaner and Walter P. Bond, 10TH
INTERNATIONAL SOFTWARE METRICS SYMPOSIUM,
METRICS 2004.

[13] Modèles de mesure de la qualité des logiciels, Karine Mordal, Jannik
Laval et Stéphane Ducasse, November 7, 2011

[14] Understanding The Model Driven Architecture (MDA), Sinan Si
Alhir, Fall 2003, Volume 11 N°3 Page 18, ISSN 1023-4918

[15] THE GOAL QUESTION METRIC APPROACH, Victor R. Basili1
et al, Encyclopedia of Software Engineering, 2 Volume Set, 1994

Youness BOUKOUCHI et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (3) , 2014, 4390-4393

www.ijcsit.com 4393

